
Notes from artdaq chat
02/09/2016

How to log into ICARUS machine:
(1) You need a CERN computing account, which means you’ve registered with

CERN.
(2) ssh username@lxplus.cern.ch
(3) ssh icadaq@PC03-warp

(a) Password is the username

(b) This is a machine in use, so please don’t just start communications with hardware willy-nilly.

Unless you’re communicating directly with someone, probably OK to look around, but don’t do
anything.

Where things are on that machine:
● All the artdaq-demo stuff is in /home/icadaq/artdaq-demo-base
● I’ve started an artdaq area for icarus (icartdaq :)): /home/icartdaq
● Repositories, until we get something more official (soon):

○ https://github.com/wesketchum/icartdaq
○ https://github.com/wesketchum/icartdaq-core
○ Mostly up to date

●

https://github.com/wesketchum/icartdaq
https://github.com/wesketchum/icartdaq
https://github.com/wesketchum/icartdaq-core
https://github.com/wesketchum/icartdaq-core

ARTDAQ Fragment Reference
https://cdcvs.fnal.gov/redmine/projects/artdaq-
demo/wiki/Fragments_and_FragmentGenerators_w_Toy_Fragments_as_Example
s

https://cdcvs.fnal.gov/redmine/projects/artdaq-demo/wiki/Fragments_and_FragmentGenerators_w_Toy_Fragments_as_Examples
https://cdcvs.fnal.gov/redmine/projects/artdaq-demo/wiki/Fragments_and_FragmentGenerators_w_Toy_Fragments_as_Examples
https://cdcvs.fnal.gov/redmine/projects/artdaq-demo/wiki/Fragments_and_FragmentGenerators_w_Toy_Fragments_as_Examples
https://cdcvs.fnal.gov/redmine/projects/artdaq-demo/wiki/Fragments_and_FragmentGenerators_w_Toy_Fragments_as_Examples

ARTDAQ Fragment Intro
artdaq::Fragment

experiment-specific

overlay

payload (data read from hardware, untouched by artdaq
FragmentGenerators or BoardReaders)

<metadata>
eg. board
serial
number, # of
channel (if
not provided
in payload)

header

overlay

raw data<header>

ICARUS fragment structure

Raw Data (Ch0 T0, Ch1 T0, Ch2 T0, …
Ch63 T0, Ch0 T1, Ch1 T1 …)

Event
Number Timestamp Event

Number Timestamp

Board 1 Board 2 ...

https://github.com/wesketchum/icartdaq-core/blob/master/icartdaq-
core/Overlays/CAEN2795Fragment.hh

DarkSide example: https://cdcvs.fnal.
gov/redmine/projects/darksidecore/repository/revisions/develop/entry/darksidecore/Data/V17
2xFragment.hh

https://github.com/wesketchum/icartdaq-core/blob/master/icartdaq-core/Overlays/CAEN2795Fragment.hh
https://github.com/wesketchum/icartdaq-core/blob/master/icartdaq-core/Overlays/CAEN2795Fragment.hh
https://github.com/wesketchum/icartdaq-core/blob/master/icartdaq-core/Overlays/CAEN2795Fragment.hh

Board Block
(CAEN2795 Fragment payload is vector<BoardBlock>)

struct BoardBlock {

uint32_t evNum : 24;

uint32_t unused : 8;

uint32_t timestamp;

uint32_t data[NSamples][NChannels];

}

The order of the indicies of the data array should be chosen so that they correctly
index the raw data.

CommandableFragmentGenerator
Abstract base class with the following:

● start()
● getNext()
● pause()
● resume()
● stop()
● report()

The one I made for ICARUS: https://github.
com/wesketchum/icartdaq/blob/master/icartdaq/Generators/CAEN2795_generator
.cc

https://github.com/wesketchum/icartdaq/blob/master/icartdaq/Generators/CAEN2795_generator.cc
https://github.com/wesketchum/icartdaq/blob/master/icartdaq/Generators/CAEN2795_generator.cc
https://github.com/wesketchum/icartdaq/blob/master/icartdaq/Generators/CAEN2795_generator.cc
https://github.com/wesketchum/icartdaq/blob/master/icartdaq/Generators/CAEN2795_generator.cc

Metric Reporting
https://cdcvs.fnal.gov/redmine/projects/artdaq-utilities/wiki/Artdaq-ganglia-plugin

https://cdcvs.fnal.gov/redmine/projects/artdaq-
utilities/wiki/Sending_metric_data_from_User_Code

http://mu2edaq01.fnal.gov/ganglia/?c=mu2e%20DAQ&h=mu2edaq01-data.fnal.
gov&m=load_one&r=hour&s=by%20name&hc=4&mc=2

https://cdcvs.fnal.
gov/redmine/projects/ds50daq/wiki/Enabling_Ganglia_monitoring_on_the_WH14N
E_teststand

https://github.com/ganglia/monitor-core/wiki/Ganglia-Quick-Start <= Ubuntu
instructions

https://cdcvs.fnal.gov/redmine/projects/artdaq-utilities/wiki/Artdaq-ganglia-plugin
https://cdcvs.fnal.gov/redmine/projects/artdaq-utilities/wiki/Artdaq-ganglia-plugin
https://cdcvs.fnal.gov/redmine/projects/artdaq-utilities/wiki/Sending_metric_data_from_User_Code
https://cdcvs.fnal.gov/redmine/projects/artdaq-utilities/wiki/Sending_metric_data_from_User_Code
https://cdcvs.fnal.gov/redmine/projects/artdaq-utilities/wiki/Sending_metric_data_from_User_Code
http://mu2edaq01.fnal.gov/ganglia/?c=mu2e%20DAQ&h=mu2edaq01-data.fnal.gov&m=load_one&r=hour&s=by%20name&hc=4&mc=2
http://mu2edaq01.fnal.gov/ganglia/?c=mu2e%20DAQ&h=mu2edaq01-data.fnal.gov&m=load_one&r=hour&s=by%20name&hc=4&mc=2
http://mu2edaq01.fnal.gov/ganglia/?c=mu2e%20DAQ&h=mu2edaq01-data.fnal.gov&m=load_one&r=hour&s=by%20name&hc=4&mc=2
https://github.com/ganglia/monitor-core/wiki/Ganglia-Quick-Start

Notes from the whiteboard, part 1
To-do

1. Change the ToyFragment classes to make header/metadata/payload more clear.
2. Check artdaq-demo documentation for places where the artdaq/artdaq-core breakdown is not

correctly represented.
3. Create git repos for ICARUS

CommandableFragmentGenerator Questions/Comments:

1. Do we want to make more of the protected methods in CommandableFragmentGenerator virtual?
[start, stop, report?] [also see notes on slide 8]

2. The samples that we provide in the demo should have all of the methods that we want users to
consider included, even if they are empty. We should also include comments that talk about what
can be done in each of them, etc. Also include relative path to CommandableFragGen so users can
easily look at it.

Notes from the whiteboard, part 2
Proposed best practice:

1. Treat the data read out of the hardware as immutable.

Additional to-do items or things to be considered:

1. Modify the metadata interface in artdaq::Fragment to make it easier/more robust for users to update
the metadata contents after the Fragment is constructed.

2. Add the use of MRB to the demo.
3. Create an artdaq-skeleton (and probably artdaq-core-skeleton) package that users can use to get

started.

Meeting summary
We first talked about the layout of data in artdaq::Fragments and experiment-specific payloads. Also, the
role of Overlay classes in interpreting the experiment-specific payloads. Wes pointed out that the existing
ToyFragment handling in the demo, unfortunately, made this harder to understand rather than easier. We
pointed out that the definition of the Metadata structs in the Overlay class headers is simply a
convenience place to do that; the metadata struct is not used in the Overlay class methods.

Next, we talked about current contents of Wes’ ICARUS fragment overlay class(es) and generators.
(Links on page 6.)

Then we talked a bit about metrics and reporting.

(I’ve glossed over a couple of details - please see the Whiteboard Notes on the previous two pages for
additional information; KB)

